Polynomials

Question 1.

If a polynomial p(y) is divided by y + 2, then which of the following can be the remainder:

- (a)y + 1
- (b)2y + 3
- (c) 5
- (d)y 1

Answer: (c) 5

When p(y) is divided by y + 2, then the degree of remainder $\leq deg$ of (y + 2)

Question 2.

If a polynomial p(x) is divided by b - ax; the remainder is the value of p(x) at x = ax

- (a) a
- (b) $\frac{b}{a}$
- (c) $\frac{a}{-b}$ (d) $\frac{a}{b}$

Answer: (b) $\frac{b}{a}$

$$b - ax = 0$$

$$\mathbf{x} = \frac{b}{a}$$

Question 3.

If the polynomials $ax^3 + 4x^2 + 3x - 4$ and $x^3 - 4x + a$, leave the same remainder when divided by (x-3), then value of a is:

- (a) 2b
- (b) 1
- (c) 1
- (d) 2b

Answer: (b) - 1

$$p(x) = ax^3 + 4x^2 + 3x - 4$$

$$q(x) = x^3 - 4x + a$$

$$p(3) = q(3)$$
$$a = -1$$

Question 4.

If $p(x) = 2x^4 - ax^3 + 4x^2 + 2x + 1$ is a. multiple of 1 - 2x, then find the value of a:

- (a) 25
- (b) $\frac{1}{2}$
- $(c)^{\frac{-1}{2}}$
- (d) 8

Answer: (a) 25

p(x) is a multiple of 1 - 2x.

1-2x is a factor of p(x)

Question 5.

If -2 is a zero of $p(x) = (ax^3 + bx^2 + x - 6)$ and p(x) leaves a remainder 4 when divided by (x - 2), then the values of a and b are (respectively):

$$(a)a = 2,b = 2$$

(b)
$$a = 0, b = -2$$

(c)
$$a = 0$$
, $b = 2$

$$(d)$$
 a = 0, b = 0

Answer: (c) a = 0, b = 2

If -2 is a zero =>

$$p(-2) = 0$$

$$=> -2a + b = 2$$

Also,
$$p(2) = 4$$

$$2a + b = 2 = >a = 0$$
 and $b = 2$

Question 6.

If $x^{101} + 1001$ is divided by x + 1, then remainder is:

- (a) 0
- (b) 1
- (c) 1490
- (d) 1000

Answer: (d) 1000

p(x) is divided by x + 1

$$p(-1) = (-1^{101}) + 1001 = 1000$$

Question 7.

If one zero of a polynomial $p(x) = ax^2 + bx + c(a \neq 0)$ is zero, then, which of the following is correct:

- (a) b = 0
- (b) c = 0
- (c) other zero is also zero
- (d) Nothing can be said about p(x).

Answer: (b) c = 0

let,
$$\alpha = 0$$

Product of the roots = α s = 0

$$=\frac{c}{a}=0$$

Question 8.

If α , s are the zeroes of $x^2 - lx + m$, then

$$\frac{\alpha}{s} + \frac{s}{\alpha}$$

(a)
$$\frac{l^2-2m}{m}$$

(a)
$$\frac{l^2-2m}{m}$$
 (b) $\frac{l^2+2m}{m}$

(c)
$$\frac{l-2m}{m}$$

(d)
$$l^2 - 2m$$

Answer: (a) $\frac{l^2-2m}{m}$

$$\alpha + s = 1$$

$$\alpha s = m$$

$$\Rightarrow \alpha^2 + s^2 = (\alpha + s)^2 - 2\alpha s = l^2 - 2m$$

$$\Rightarrow \frac{\alpha}{s} + \frac{s}{\alpha} = \frac{\alpha^2 + s^2}{\alpha s} = \frac{l^2 - 2m}{m}$$

Question 9.

sum of the squares of the zeroes of the polynomial $p(x) = x^2 + 7x - k$ is 25, find k.

- (a) 12
- (b) 49
- (c) 24
- (d) 12

Answer: (d) - 12

$$p(x) = x^2 + 7x - k$$

let α ,s be the zeroes

$$\alpha + s = -7$$

$$\alpha s = -k$$

$$\alpha^2 + s^2 = 25$$

$$(\alpha^2 + s) - 2\alpha s = 25$$

$$49 + 2k = 25$$

$$k = -12$$

Question 10.

If one zero of $3x^2 - 8x + 2k + 1$ is seven times the other, find k.

- (a) $\frac{2}{3}$ (b) $\frac{1}{3}$ (c) $\frac{4}{3}$ (d) $\frac{5}{3}$

Answer: (a) $\frac{2}{3}$

$$\alpha + 7\alpha = 8\alpha = \frac{8}{3}$$

$$\alpha = \frac{1}{3}$$
$$k = \frac{2}{3}$$

$$k = \frac{3}{3}$$

Question 11.

Let, α , s, v be the zeroes of $x^3 + 4x^2 + x - 6$ such that product of two of the zeroes is 6. Find the third zero.

- (a) 6
- (b) 2
- (c) 4
- (d) 1

Answer: (a) 6

$$\alpha$$
 s v = 6,

$$\alpha s = 61$$

$$=> v = 6$$

Question 12.

If a, s are the zeroes of $x^2 - 8x + \lambda$, such

that
$$\alpha - s = 2$$
, then $X =$

- (a) 8
- (b) 22

(c) 60

Answer: (d) 15

$$\alpha + s = 8$$
,

$$\alpha s = \lambda$$

$$\alpha - s = 2$$

$$=> (\alpha - s)2 = 4$$

$$=> \alpha^2 + S^2 - 2\alpha S = 4$$

$$=> (\alpha + s)^2 - 4as = 4$$

$$=> 64 - 4\lambda = 4$$

$$=> 4\lambda. = 60$$

$$=> X = 15$$

Question 13.

Find a and b so that the polynomial $6x^4 + 8x^3 - 5x^2 + ax + b$ is exactly divisible by $2x^2 - 5$.

(a)
$$a = 20$$
, $b = -25$

(b)
$$a = 4$$
, $b = -5$

(c)
$$a = 20$$
, $b = 5$

(d)
$$a = -20$$
, $b = -25$

Answer: (d) a = -20, b = -25

Divide the given polynomial by $2\times 2 - 5$ get the remainder as (20 + a)x + (b + 25) which should be zero

Question 14.

If α , s are the zeroes of $p(x) = 2x^2 - 5x + 7$, write a polynomial with zeroes $2\alpha + 3s$ and $3\alpha + 2s$.

(a)
$$k(x^2 + \frac{5}{2}x - 41)$$

(b)
$$k(x^2 - \frac{5}{2}x + 41)$$

(c)
$$k(x^2 - \frac{5}{2}x - 41)$$

(d) k(-
$$x^2 + \frac{5}{2}x + 41$$
)

Answer: (b) $k(x^2 - \frac{5}{2}x + 41)$

$$\alpha + s = \frac{5}{2}$$

$$\alpha s = \frac{7}{2}$$

$$k(x^2 - \frac{5}{2}x + 41)$$

Question 15.

If sum of the two zeroes of a cubic polynomial $x^3 - ax^2 + bx - c$, is zero, then which of the following is true:

- (a) ab = c
- (b) a b = c
- (c) ab = $\frac{c}{2}$
- (d) $a = \frac{b}{c}$

Answer: (a) ab = c

Let, α , s, v be the roots = $\alpha + s + v = a$

v = a

now v is a zero

ab = c

Question 16.

If a, s are the zeroes of $p(x) = 2x^2 + 5x + k$ such that, $\alpha^2 + s^2 + \alpha s = \frac{21}{4}$, then k equals,

- (a) 12
- (b) 4
- (c) 2
- (d) 12

Answer: (c) 2

$$\alpha + s = -\frac{5}{2}$$

$$\alpha s = \frac{k}{2}$$

$$\alpha^2 + s^2 + \alpha s = \frac{21}{4}$$

$$(\alpha + s)^2 - \alpha s = \frac{21}{4}$$
$$\frac{25}{4} - \frac{k}{2} = \frac{21}{4}$$

$$\frac{25}{4} - \frac{k}{2} = \frac{21}{4}$$

Question 17.

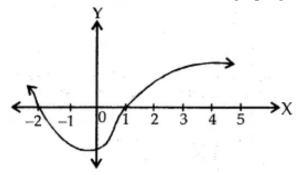
If α , s are the zeroes of $x^2 + px + q$, then a polynomial having zeroes $\frac{1}{\alpha}$ and $\frac{1}{s}$ is,

- (a) $x^2 + px + q$
- (b) $x^2 + qx + p$
- (c) $px^2 + qx + 1$
- (d) $qx^2 + px + 1$

Answer: (d) $qx^2 + px + 1$

 $\alpha + s = -p$

$$\alpha s = q$$


$$S = \frac{1}{\alpha} + \frac{1}{s} = \frac{\alpha + s}{\alpha s} = \frac{-p}{q}$$

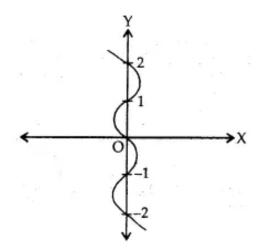
$$P = \frac{1}{\alpha} \cdot \frac{1}{s} = \frac{1}{q}$$

$$k\left(x^2 + \frac{p}{q}x + \frac{1}{q}\right) = \frac{k}{q}(qx^2 + px + 1)$$

Question 18.

Find the number of zeros in the graph given:

- (a) 3
- (b) 2
- (c) 1
- (d) 0


Answer: (b) 2

Since the graph meets X-axis at two points -2 and 1, thus it has 2 zeroes.

Question 19.

Write the zero of the polynomial p(x), whose graph is given :

- (a) 1
- (b) 0
- (c) 1
- (d) 2

Answer: (b) 0

Since the graph meets X-axis at x = 0

 \Rightarrow Zero of p(x) is 'O' \Rightarrow Correct option is (b).

Question 20.

If α , s, v are the zeros of the polynomial $2x^3 - x^2 + 3x$ -1, find the value of $(\alpha sv) + (\alpha s + sv + v\alpha)$.

- (a) 2
- (b) $\frac{3}{2}$
- (c) $\frac{1}{2}$
- (d) 0

Answer: (a) 2

$$p(x) = 2x^3 - x^2 + 3x - 1$$

$$\alpha sv = -d/a = \frac{1}{2}$$

$$\alpha s + s v + v \alpha = c/a = \frac{3}{2}$$

$$\alpha s + sv + v\alpha = c/a = \frac{3}{2}$$

$$\alpha s + sv + v\alpha + \alpha sv = \frac{3}{2} + \frac{1}{2} = 2$$

Question 21.

If the zeros of the polynomial $x^3 - 3x^2 + x + 1$ are p - q, p and p + q. Find the value of q.

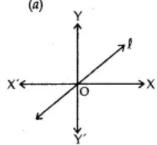
- (a) 1
- (b) 0
- (c) 2
- (d) $\pm \sqrt{2}$

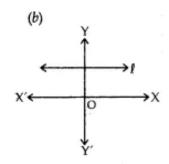
Answer: (d)
$$\pm \sqrt{2}$$

 $x^3 - 3x^2 + x + 1$
zeroes are $p - q, p, p + q$
sum of zeroes = $(p - q) + p + (p + q)$
= $3p$
= 3
 $\alpha + s + v = \frac{-b}{a}$
further = $\alpha s + sv + v\alpha = \frac{c}{a}$
 $(p - q) p + p(p + q) + (p - q)(p + q) = 1$
 $q = \pm \sqrt{2}$

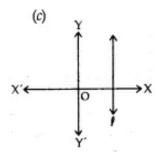
Question 22.

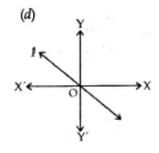
A quadratic polynomial has:

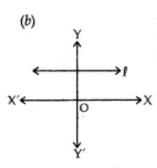

- (a) at least 2 zeros
- (b) exactly 2 zeros
- (c) at most 2 zeros
- (d) exactly 1 zero


Answer: (c) at most 2 zeros

A quadratic polynomial has atmost two zeroes.


Question 23.


Which of the following Linear Graphs has no zero?



Answer:

as it does not meet X axis.

Question 24.

If α , s are the roots of $cx^2 - bx + a = 0$ (c 0), then $\alpha + s$ is:

- (a) $\frac{-b}{a}$

- (b) $\frac{b}{a}$ (c) $\frac{c}{a}$ (d) $\frac{b}{c}$

Answer: (d) $\frac{b}{c}$

sum of the roots = $-\frac{coefficientofx}{coefficientofx^2} = \frac{b}{c}$

Question 25.

If P(x) and D(r) are any two polynomials such that $D(x) \neq 0$, there exists unique polynomial Q(x)and R(x) such that, P(x) = D(x). Q(x) + R(x) where :

- (a) R(x) = 0 and deg R(x) > deg Q(x)
- (b) R(x) = 0 or deg R(x) > deg D(x)
- (c) $\deg R(x) \leq \deg Q(x)$
- (d) R(x) = 0 or deg R(x) < deg D(x)

Answer: (b) R(x) = 0 or deg R(x) > deg D(x)

division algorithm

Ouestion 26.

When we divide $x^3 + 5x + 7$ by $x^4 - 7x^2 - 6$ then quotient and remainder are (respectively):

- (a) $0,x^3 + 5x + 7$
- (b) x, 2x + 3
- (c) $1,x^4-7x^2-6$
- (d) x^2 , 4x 9

Answer: (a) $0,x^3 + 5x + 7$

Degree of the divisor is more than the degree of the dividend = quotient is zero and the remainder is $x^3 + 5x + 7$

15 A + JA + /

Question 27.

The value of b, for which $2x^3 + 9x^2 - x - b$ is exactly divisible by 2x + 3 is:

- (a) -15
- (b) 15
- (c) 9
- (d) 9

Answer: (b) 15

when $2x^3 + 9x^2 - x - b$ is divided by 2x + 3, remainder is -b + 15

Question 28.

If α and s are two zeros of the polynomial p(x), then which of the following is a factor of p(x):

- (a) $(x \alpha)(x s)$
- (b) $(x + \alpha)(x + s)$
- (c) $k(x \alpha)$
- (d) k(x-s)

Answer: (a) $(x - \alpha)(x - s)$

if α , s are the zeros of p(x), then $(x - \alpha)(x - s)$ is a factor of p(x).

Question 29.

Find a cubic polynomial with the sum, sum of the product of its zeros taken two at a time and the product of its zeros as -2, +5, -3, respectively.

(a)
$$2x^3 + 5x^2 + x + 3$$

(b)
$$4x^3 + 5x^2 - 3x + 7$$

(c)
$$x^3 + 2x^2 + 5x + 3$$

(d)
$$2x^3 + 5x^2 + 3x + 1$$

Answer: (c) $x^3 + 2x^2 + 5x + 3$

Let the polynomial be $ax^3 + bx^2 + cx + d$

$$-b/a = -2$$

$$c/a = 5$$

$$- d/a = -3$$

$$a = 1, b = 2, c = 5 \text{ and } d = 3$$

required polynomial is $x^3 + 2x^2 + 5x + 3$

Question 30.

Write a polynomial with zeros 1, -1 and 1.

(a)
$$x^3 + x^2 + x + 1$$

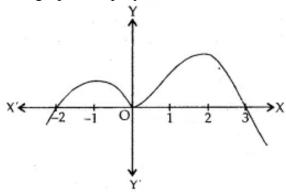
(b)
$$x^3 - x^2 + x + 1$$

(c)
$$x^3 - x^2 - x - 1$$

(d)
$$x^3 - x^2 - x + 1$$

Answer: (d) $x^3 - x^2 - x + 1$

zeros are 1, -1 and 1.


required polynomial is

$$k(x-1)(x+1)(x-1)$$

$$= x^3 - x^2 - x + 1$$

Question 31.

The graph of a polynomial is as shown, find the polynomial

(a)
$$k(x^2 - x - 6)$$

(b) $k(x^3 + x^2 + 6x)$

(c) $k(x^3 - x^2 - 6x)$

(d) $k(x^3 - 6x)$

Answer: (c) $k(x^3 - x^2 - 6x)$

zeros are -2.0, and 3

required polynomial = k(x-2)(x-0)(x-3)

 $= k(x^3 - x^2 - 6x)$

Question 32.

If α , s and v are the zeroes of the polynomial $2x^3 - x^2 + 3x - 1$, find the value of => (as + sv + va + asv)²

(a) $\frac{3}{2}$

(b) $\frac{5}{2}$

(c) $\frac{\overline{1}}{2}$

(d) 4

Answer: (d) 4

 $\alpha s + sv + v\alpha + \alpha sv = \frac{3}{2} + \frac{1}{2} = 2$

 $(\alpha s + s v + v \alpha + \alpha s v)^2 = 4$

Question 33.

If $2 \pm \sqrt{3}$ are the two zeros of a polynomial then the following is a factor:

(a) $x^2 - 4x + 1$

(b) $x^2 + 4x - 1$

(c) $4x^2 + x - 1$

(d) $4x^2 - x + 1$

Answer: (a) $x^2 - 4x + 1$

If a, s are the zeroes \Rightarrow $(x - \alpha)(x - s)$ is a factor

 $=> (x - (2 + \sqrt{3})) (x - (2 - \sqrt{3}))$ is a factor

 \Rightarrow x2 - 4x + 1 is a factor.

Question 34.

If 2 is a zero of $p(x) = x^2 + 3x + k$, find k:

(a) 10

(b) 5

(c) - 3

(d) - 10

Answer: (d) - 10

$$p(x) = x^2 + 3x + k$$

$$p(2) = 0$$

$$=>4+6+k=0$$

$$=k = -10$$

Question 35.

Given that two of the zeroes of the

polynomial, $x^3 + px^2 + rx + s$ are 0, then third zero

- (a) 0
- (b) $\frac{p}{r}$
- (c) $\frac{r}{r}$
- (d) $\frac{p}{q}$

Answer: (c) $\frac{-p}{r}$

Two zeroes are zero, let third zero = α

=> Sum of the roots $=\alpha+0+0$

 $Coefficient of x^2$

 $Coefficient of x^3$

Ouestion 36.

Given that one of the zeroes of the

polynomial $ax^3 + bx^2 + cx + d$ is zero, then the product of the other two zeroes is:

- (a) $\frac{-c}{a}$ (b) $\frac{c}{a}$
- (c) 0
- (d) $\frac{-b}{a}$

Answer: (b) $\frac{c}{a}$

$$\alpha_S + s_V + v\alpha = \frac{c}{a}$$

now $\alpha = 0$

$$0 + sv + 0 = \frac{c}{a}$$

$$SV = \frac{c}{a}$$

Question 37.

The number of polynomials having zeroes -1 and -5 is:

- (a) 2
- (b) 3

- (c) 1
- (d) More than 3.

Answer: (d) More than 3.

n – number of polynomials can have zeroes -1 and -5.

Question 38.

The graph of the polynomial f(x) = 2x - 5 intersects the x - axis at

- (a) $(\frac{5}{2}, 0)$ (b) $(\frac{-5}{2}, 0)$
- (c) $(\frac{-5}{2}, \frac{5}{2})$ (d) $(\frac{5}{2}, \frac{-5}{2})$

Answer: (a) $(\frac{5}{2}, 0)$

Question 39.

If the zeroes of the quadratic polynomial $Ax^2 + Bx + C$, C # 0 are equal, then

- (a) A and B have the same sign
- (b) A and C have the same sign
- (c) B and C have the same sign
- (d) A and C have opposite signs

Answer: (b) A and C have the same sign

Ouestion 40.

The number of polynomials having zeroes as 4 and 7 is

- (a) 2
- (b) 3
- (c) 4
- (d) more than 4

Answer: (d) more than 4

Question 41.

If one of the zeroes of the cubic polynomial $x^3 + ax^2 + bx + c$ is -1, then the product of the other two zeroes is

- (a) b a + 1
- (b) b a 1

(c)
$$a - b + 1$$

$$(d) a - b - 1$$

Answer: (a) b - a + 1

Question 42.

The number of zeros of a cubic polynomial is

- (a) 3
- (b) at least 3
- (c) 2
- (d) at most 3

Answer: (d) at most 3

Question 43.

Find the quadratic polynomial whose zeros are 2 and -6

(a)
$$x^2 + 4x + 12$$

(b)
$$x^2 - 4x - 12$$

(c)
$$x^2 + 4x - 12$$

(d)
$$x^2 - 4x + 12$$

Answer: (c) $x^2 + 4x - 12$

Question 44.

If 5 is a zero of the quadratic polynomial, $x^2 - kx - 15$ then the value of k is

- (a) 2
- (b) -2
- (c) 4
- (d) 4

Answer: (a) 2

Question 45.

The number of polynomials having zeroes as -2 and 5 is

- (a) 1
- (b) 2
- (c) 3
- (d) more than 3

Answer: (d) more than 3

Question 46.

The zeroes of the quadratic polynomial $x^2 + 1750x + 175000$ are

- (a) both negative
- (b) one positive and one negative
- (c) both positive
- (d) both equal

Answer: (a) both negative

Question 47.

If the zeroes of the quadratic polynomial $x^2 + (a + 1)x + b$ are 2 and -3, then

- (a) a = -7, b = -1
- (b) a = 5, b = -1
- (c) a = 2, b = -6
- (d) a 0, b = -6

Answer: (d) a - 0, b = -6

Question 48.

Sum and the product of zeroes of the polynomial $x^2 + 7x + 10$ is

- (a) $\frac{10}{7}$ and $\frac{-10}{7}$ (b) $\frac{7}{10}$ and $\frac{-7}{10}$
- (c) -7 and 10
- (d) 7 and -10

Answer: (c) -7 and 10

Ouestion 49.

If x = 2 and x = 3 are zeros of the quadratic polynomial $x^2 + ax + b$, the values of a and b respectively are:

- (a) 5, 6
- (b) 5, -6
- (c) 5, 6
- (d) 5, -6

Answer: (c) - 5, 6

Question 50.

The zeroes of the quadratic polynomial $3x^2 - 48$ are

- (a) both negative
- (b) one positive and one negative
- (c) both positive
- (d) both equal

Answer: (b) one positive and one negative

Question 14.

The zeroes of the quadratic polynomial $x^2 + kx + k$, $k \neq 0$,

- (a) cannot both be positive
- (b) cannot both be negative
- (c) are always unequal
- (d) are always equal

Answer: (a) cannot both be positive

Question 51.

The sum and product of the zeroes of the polynomial x^2 -6x+8 are respectively

- (a) $\frac{-3}{2}$ and -1
- (b) 6 and 8
- (c) $\frac{-3}{2}$ and 1
- (d) $\frac{3}{2}$ and 1

Answer: (b) 6 and 8

Question 52.

If the point (5,0), (0-2) and (3,6) lie on the graph of a polynomial. Then which of the following is a zero of the polynomial?

- (a) 5
- (b) 6
- (c) not defined
- (d) -2

Answer: (a) 5

Question 53.

If a and β are the zeroes of the polynomial $5x^2 - 7x + 2$, then sum of their reciprocals is:

- (a) $\frac{14}{25}$
- (b) $\frac{7}{5}$ (c) $\frac{2}{5}$ (d) $\frac{7}{2}$

Answer: (d) $\frac{7}{2}$

Question 54.

If one zero of the quadratic polynomial $x^2 + 3x + k$ is 2, then the value of k is

- (a) 10
- (b) -10
- (c) 5
- (d) -5

Answer: (b) -10

Question 55.

The zeroes of the quadratic polynomial $x^2 + px + p$, $p \neq 0$ are

- (a) both equal
- (b) both cannot be positive
- (c) both unequal
- (d) both cannot be negative

Answer: (b) both cannot be positive

Question 56.

The zeroes of the quadratic polynomial $x^2 + 99x + 127$ are

- (a) both positive
- (b) both negative
- (c) one positive and one negative
- (d) both equal

Answer: (b) both negative

Fill in the blanks:

1. A quadratic equation can have _____ two roots, (exactly/atleast/atmost)

Answer: atmost

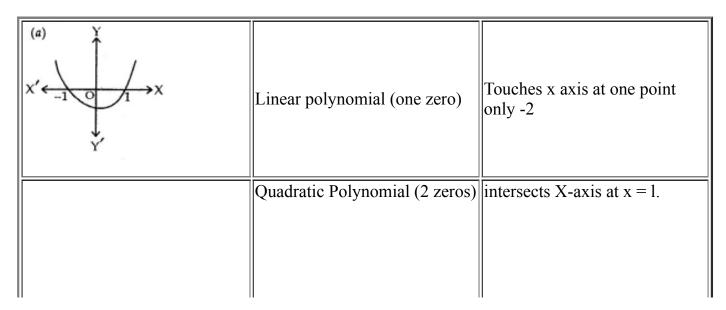
2. If a is a zero of p(x), then _____ is a factor of p(x).

Answer: $(x - \alpha)$

3. The sum of the zeroes of a cubic polynomial is _____

Answer: $-\frac{coefficientofx^2}{coefficientofx^3}$

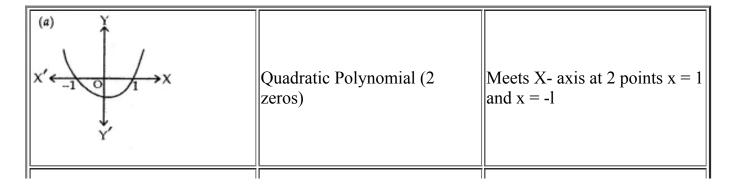
4. Division Algorithm for polynomials states that, Dividend = _____ x ____ + Remainder.


Answer: Divisor × coefficient

5. If a polynomial p(x) does not touch _____ axis, then it has no zeroes.

Answer: X - axis

Match the following:


Question 1.

$X' \leftarrow 0 \qquad 1 \rightarrow X$		
$X' \longleftrightarrow X$	Quadratic Polynomial (no zero)	Does not meet X-axis.
$X' \leftarrow -2 \bigcirc \\ Y'$	Linear Polynomial (One zero)	Passes through origin.
(e) Y X X Y Y	Quadratic Polynomial (One zero)	Meets X- axis at 2 points $x = 1$ and $x = -1$

Answer:

$X' \leftarrow O \qquad 1 \rightarrow X$	Linear Polynomial (One zero)	intersects X-axis at x = 1.
$X' \leftarrow \bigvee_{Y'} X$	Linear Polynomial (One zero)	Passes through origin.
$X' \leftarrow -2 \bigcirc \\ Y'$	Quadratic Polynomial (one zero)	Meets X- axis at -2
(e) Y X' Y'	Quadratic Polynomial (no zero)	Does not meet X-axis.

Question 2.

(a) p(x) = ax + b	No. of Zeroes = 3	3 Zeroes	$\alpha sv = -\frac{d}{a}$
$ (b) q(x) = ax^2 + bx + c $	Cubic Polynomial	2 Zeroes	Sum of the zeroes = 0
$(c) r(x) = ax^3 + bx^2 +$	Linear	Meets X-axis at 3	$\alpha + s = -\frac{b}{a}$

$cx + d(a \neq 0)$	Polynomial		
	Quadratic Polynomial	One zero	$-\frac{b}{a}$

Answer:

(a) p(x) = ax + b	Linear Polynomial	One zero	$-\frac{b}{a}$
(b) $q(x) = ax^2 + bx + c$ $(a \neq 0)$	Quadratic Polynomial	2 Zeroes	$\alpha + s = -\frac{b}{a}$
(c) $r(x) = ax^3 + bx^2 + cx + d(a \ne 0)$	Cubic Polynomial	3 Zeroes	α sv= $-\frac{d}{a}$
(d) X X	No. of Zeroes = 3	Meets X-axis at 3	Sum of the zeroes = 0

